Friday, November 5, 2021

For every \(n\in\mathbb{N}\), \frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}

\[\sum_{k=1}^{n}\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!} Base Case -> (n=1) \frac{1}{(1+1)!}=1-\frac{1}{(1+1)!} \frac{1}{2}=1-\frac{1}{2} .5=.5 Induction Step -> Assume that for every \(n\in\mathbb{N}\) \frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!} Since \frac{1}{2!}+...+\frac{n}{(n+1)!}+\frac{n+1}{((n+1)+1)!}=1-\frac{1}{((n+1)+1)!} Then \frac{1}{2!}+...+\frac{n}{(n+1)!}+\frac{n+1}{(n+2)!}=1-\frac{1}{(n+2)!}

No comments:

Post a Comment

For every n ∊ N, (1-(1/2))(1-(1/4))(1-(1/8))(1-(1/16))...(1-(1/2)) is greater than or equal to (1/4) +(1/(2^(n+1)))

  For every n ∊ N,  (1-(1/2))(1-(1/4))(1-(1/8))(1-(1/16))...(1-(1/2^(n))) is greater than or equal to (1/4) +(1/(2^(n+1))) PROOF: Base Case:...