For every n ∊ ℕ, 1·2 + 2·4 + 3·5 + . . . + n(n+2) = n(n+1)(2n+7)/6
Base case: Verify the statement for P(1)
(1)(1+2) = (1)(1+1)(2(1)+7)/6
(1)(3) = (1)(2)(9)/6
3 = 18/6 → 3 = 3 ☑
Induction case:
Suppose P(n) holds i.e 1·2 + 2·4 + 3·5 + . . . + n(n+2) = n(n+1)(2n+7)/6
Then P(n+1)
= 1·2 + 2·4 + 3·5 + . . . + (n+1)((n+1)+2)
which simplifies to:
= 1·2 + 2·4 + 3·5 + . . . + (n+1)(n+3)
= (1·2 + 2·4 + 3·5 + . . . + n(n+2)) + (n+1)(n+3) = n(n+1)(2n+7)/6 + (n+1)(n+3)
P(n) + (n+1)(n+3) = n(n+1)(2n+7)/6 + (n+1)(n+3)
the right hand side i.e. n(n+1)(2n+7)/6 + (n+1)(n+3) can be simplified to
= n(n+1)(2n+7)/6 + 6(n+1)(n+3)/6
factor out (n+1)/6 and get
= (n+1/6)(n(2n+7) + 6(n+3))
= (n+1/6)(2n^2 + 7n + 6n + 18)
=(n+1/6)((n+2)(n+9)
(n+1)(n+2)(n+9)/6 ☑
No comments:
Post a Comment