For every n \(\in\) \(\mathbb{N}\), \(1^{3}\) + \(2^{3}\) + . . . + \(n^{3}\) = \(\frac{n^{2}(n+1)^{2}}{4}\)
Proof By Induction
Base Case: n = 1
\(1^{3}\) = 1
\(\frac{1^{2}(1+1)^{2}}{4}\) = 1
Base case holds!
Induction Hypothesis:
Assume that \(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) = \(\frac{k^{2}(k+1)^{2}}{4}\) is true for some k \(\in\) \(\mathbb{N}\). We will use this statement in our inductive step.
Inductive Step:
Suppose P(k) is true, P(k): \(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) = \(\frac{k^{2}(k+1)^{2}}{4}\). Prove then that P(k+1) is true. P(k+1): \(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) = \(\frac{(k+1)^{2}(k+2)^{2}}{4}\) is true for some k \(\in\) \(\mathbb{N}\)
\(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) = \(\frac{k^{2}(k+1)^{2}}{4}\)
\(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) + \((k+1)^{3}\) = \(\frac{k^{2}(k+1)^{2}}{4}\) + \((k+1)^{3}\)
\(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) + \((k+1)^{3}\) = \(\frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}\)
\(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) + \((k+1)^{3}\) = \(\frac{k^{2}(k+1)^{2} + 4(k+1)^{1}(k+1)^{2}}{4}\)
\(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) + \((k+1)^{3}\) = \(\frac{(k+1)^{2}(k^{2} + 4k + 4)}{4}\)
\(1^{3}\) + \(2^{3}\) + . . . + \(k^{3}\) + \((k+1)^{3}\) = \(\frac{(k+1)^{2}(k+2)^{2}}{4}\)
This result equals the right hand side of P(k+1). We have proven by induction that for every n \(\in\) \(\mathbb{N}\), \(1^{3}\) + \(2^{3}\) + . . . + \(n^{3}\) = \(\frac{n^{2}(n+1)^{2}}{4}\)
No comments:
Post a Comment